Scale-free networks are rare

نویسندگان

  • Anna D. Broido
  • Aaron Clauset
چکیده

A central claim in modern network science is that real-world networks are typically “scale free,” meaning that the fraction of nodes with degree k follows a power law, decaying like k−α, often with 2 < α < 3. However, empirical evidence for this belief derives from a relatively small number of real-world networks. We test the universality of scale-free structure by applying state-of-the-art statistical tools to a large corpus of nearly 1000 network data sets drawn from social, biological, technological, and informational sources. We fit the power-law model to each degree distribution, test its statistical plausibility, and compare it via a likelihood ratio test to alternative, non-scalefree models, e.g., the log-normal. Across domains, we find that scale-free networks are rare, with only 4% exhibiting the strongest-possible evidence of scale-free structure and 52% exhibiting the weakest-possible evidence. Furthermore, evidence of scale-free structure is not uniformly distributed across sources: social networks are at best weakly scale free, while a handful of technological and biological networks can be called strongly scale free. These results undermine the universality of scale-free networks and reveal that real-world networks exhibit a rich structural diversity that will likely require new ideas and mechanisms to explain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Theory of Network in Finance

It is very important for managers, investors and financial policy-makers to detect and analyze factors affecting financial markets to obtain optimal decision and reduce risks. The importance of market analysis and attempt to improve its behavior understanding, has led analysts to use the experiences of other professionals in the fields such as social sciences and mathematics to examine the inte...

متن کامل

Second Parrondo's Paradox in Scale Free Networks

Parrondo’s paradox occurs in sequences of games in which a winning expectation value of a payoff may be obtained by playing two games in a random order, even though each game in the sequence may be lost when played individually. Several variations of Parrondo’s games apparently with the same paradoxical property have been introduced [5]; history dependence, one dimensional line, two dimensional...

متن کامل

Solution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks

A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.

متن کامل

همگام‌سازی در مدل کوراموتو روی شبکه‌های پیچیده با توزیع فرکانس ذاتی دوقله‌ای

In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...

متن کامل

A Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory

The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.03400  شماره 

صفحات  -

تاریخ انتشار 2018